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ABSTRACT 

Formulas f o r  t h e  c ros s -co r re l a t ion  and s p e c t r a l  d e n s i t y  f u n c t i o n s  of 

t h e  scalar wave f i e l d  r a d i a t e d  by a random p o i n t  source i n  a three-dimensional 

time-dependent random medium are derived. The medium is assumed t o  b e  statist i-  

ca l ly  homogeneous and i s o t r o p i c  and t o  b e  s t a t i s t i c a l l y  independent of t h e  

sou rce .  The a n a l y s i s  is based on a mod i f i ca t ion  of t h e  smoothing method. An 

approximate expres s ion  f o r  t h e  power spectrum of t h e  wave as a f u n c t i o n  of 

t h e  s o u r c e - f i e l d  p o i n t  d i s t a n c e  (or propagat ion d i s t a n c e )  is obtained f o r  t h e  

case i n  which t h e  c h a r a c t e r i s t i c  frequency of t h e  sou rce  is  much g r e a t e r  than 

t h a t  of t h e  medium. T h i s  expression shows t h a t  t h e  wave spectrum approaches 

a l i m i t i n g  form, which i s  r e f e r r e d  t o  h e r e  as t h e  fully-developed spectrum, 

w i t h  i n c r e a s i n g  propagat ion dis tance.  It is  a l s o  found t h a t  t h e  t o t a l  s i g n a l  

power is conserved as t h e  spectrum evolves .  R e s u l t s  ob ta ined  f o r  t h e  c a s e  of 

a narrow-band source  i n d i c a t e  t h a t  t h e  s p e c t r a l  bandwidth i n c r e a s e s  i n i t i a l l y  

as the s q u a r e  r o o t  of t h e  propagation d i s t a n c e ,  b u t  t h a t  a t  l a r g e r  d i s t a n c e s  

i t  approaches a l i m i t i n g  value.  Numerical r e s u l t s  ob ta ined  f o r  t h e  narrow-band 

case show a p r o g r e s s i v e  broadening of t h e  wave spectrum w i t h  i n c r e a s i n g  pro- 

paga t ion  d i s t a n c e  and/or  w i th  inc reas ing  s t r e n g t h  of t h e  randomness of t h e  

medium, i n  agreement wi th  observat ions.  

* 
This r e p o r t  is a r e v i s i o n  of ICASE Report  78-11. It w a s  prepared as a r e s u l t  

of work performed under NASA Contract Nos. NAS1-14101 and NAS1-14472 a t  ICASE, 
NASA Langley Research Center ,  Hampton, VA 23665. 



INTRODUCTION 

Broadening of t h e  frequency spectrum of an i n i t i a l l y  narrow-band wave 

f i e l d  is a phenomenon which is c h a r a c t e r i s t i c  of wave propagat ion i n  a t i m e -  

dependent medium, and is a r e s u l t  of ampli tude and frequency modulation of 

t h e  spectral  components of t h e  wave by t h e  t i m e  v a r i a t i o n s  i n  t h e  p r o p e r t i e s  

of t h e  medium. Of p a r t i c u l a r  p r a c t i c a l  i n t e r e s t  is  t h e  e f f e c t  of random 

f l u c t u a t i o n s  of  t h e  medium, and indeed s p e c t r a l  broadening due t o  propagat ion  

through turbulence  has  been observed i n  t h e  case  of both a c o u s t i c  and e l e c t r o -  

magnetic waves '". The p resen t  i n v e s t i g a t i o n  was undertaken wi th  t h e  purpose 

of s tudying  t h i s  e f f e c t ,  i .e . ,  s p e c t r a l  broadening a r i s i n g  from t h e  presence  

of random, time-dependent f l u c t u a t i o n s  of t h e  medium, from a r a t h e r  g e n e r a l  

p o i n t  of view. 

Previous t h e o r e t i c a l  i n v e s t i g a t i o n s  of spectral  broadening of waves i n  

random media inc lude  those  of Howe3, Fante  4' ', and Woo, e t  a l .  '. 
der ived  a k i n e t i c  equat ion  and used i t  t o  s tudy  t h e  e f f e c t  of t h e  random 

v e l o c i t y  f i e l d  on t h e  frequency spectrum of an  a c o u s t i c  wave propagat ing  i n  

a t u r b u l e n t  f l u i d .  F a n t e  used t r a n s p o r t  theory  t o  s tudy  frequency spectra of 

beamed waves propagat ing i n  a tu rbu len t  atmosphere. The a n a l y s i s  of Woo, 5 

- a l .  ( s ee  a l s o  Ref. 7 ,  p.  4 2 2 )  is based on t h e  p a r a b o l i c  approximation. Howe 

t r e a t e d  t h e  case  of an i s o t r o p i c  time-dependent tu rbulence  f i e l d ,  whereas 

both Fante  and Woo, 3. a. assumed t h a t  t he  t i m e  v a r i a t i o n s  of t h e  medium 

w e r e  t h e  r e s u l t  of a s t eady  mean wind convect ing a "frozen" turbulence  f i e l d  

i n  a d i r e c t i o n  perpendicular  t o  the d i r e c t i o n  of propagat ion.  

Howe 

The au tho r s  mentioned above based t h e i r  ana lyses  on d i f f e r e n t  mathematical  

models and/or  c a l c u l a t e d  d i f f e r e n t  s t a t i s t i c a l  p r o p e r t i e s  of t he  wave f i e l d  

than those  considered i n  the  present  i n v e s t i g a t i o n  ( e .g . ,  Woo, e t  a l .  cons idered  

t h e  spectrum of t h e  complex wave amplitude,  whereas t h e  p re sen t  i n v e s t i g a t i o n  



d e a l s  w i t h  t h e  e n t i r e  wave func t ion ,  which i s  a rea l  q u a n t i t y ) ,  and hence t h e i r  

r e s u l t s  do n o t  agree  i n  a l l  r e s p e c t s  w i th  those  obta ined  he re .  The r e s u l t s  of 

both  Howe and Fante  i n d i c a t e  t h a t ,  over  a s u i t a b l y  r e s t r i c t e d  propagat ion  

pa th  and f o r  high-frequency waves, t h e  c h a r a c t e r i s t i c  wid th  of t h e  wave 

spectrum i n c r e a s e s  as some power of t h e  propagat ion  d i s t a n c e .  The r e s u l t s  

of Woo, e t  a l .  are g iven  i n  a more complicated form, b u t  seem t o  show a 

similar e f f e c t .  These r e s u l t s  ag ree  g e n e r a l l y  w i t h  those  obta ined  h e r e  f o r  

small  propagat ion d i s t ances .  A t  l a r g e  d i s t a n c e s ,  however, t h e  p r e s e n t  

r e s u l t s  i n d i c a t e  t h a t  t h e  s p e c t r a l  wid th  approaches a l i m i t i n g  va lue ,  which 

i s  n o t  p red ic t ed  by any of t h e  t h e o r i e s  mentioned above. 

The problem of  s p e c t r a l  broadening has  a l s o  been t r e a t e d  i n  a r e c e n t  

paper  by Kuznetsova and Chernove. 

i s  based on the  p a r a b o l i c  approximation wi th  a f rozen  tu rbu lence  model. 

r e s u l t s  a l s o  i n d i c a t e  an i n c r e a s e  of t h e  s p e c t r a l  wid th  as some power of t h e  

propagat ion  d i s t ance  f o r  small  propagat ion  d i s t a n c e s .  However, s i n c e  t h e i r  

expres s ion  f o r  t h e  wave spectrum is  g iven  i n  t h e  form of a power series i n  

t h e  propagat ion d i s t a n c e ,  t h e  behavior  of t h e  spectrum f o r  l a r g e  propagat ion  

d i s t a n c e s ,  as p red ic t ed  by t h e i r  t heo ry ,  is  n o t  c l e a r .  

The i r  a n a l y s i s ,  l i k e  t h a t  of Woo, -- e t  a l . ,  

The i r  

S p e c t r a l  broadening i n  a random medium has  a l s o  been d i scussed  from 

a t h e o r e t i c a l  viewpoint by Adomiang; however, t h a t  au tho r  d i d  n o t  o b t a i n  an  

e x p l i c i t  a n a l y t i c a l  express ion  f o r  t h e  wave spectrum. Rela ted  work, concerned 

mainly wi th  s p e c t r a  of s c a t t e r e d  waves ( i n  c o n t r a s t  t o  t h e  p r e s e n t  i n v e s t i g a t i o n ,  

which d e a l s  with t h e  spectrum of  t h e  t o t a l  wave f i e l d )  and w i t h  s p e c t r a  of 

ampl i tude  and phase f l u c t u a t i o n s  of waves propagat ing i n  random media, can 

be  found i n  Refs. 10-16. 

-2- 
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I. ANALYSIS 

The starting point of the analysis is the scalar wave equation 

-2 2 
(C at-v2), = f , 

where u is the wave function, f is the source term, and c is the 

local propagation speed of small disturbances of the medium. 

ties are assumed to be real functions of t and &, where t is time and 

x [=(xl,x2,x,>J 

All quanti- 

is a three-dimensional spatial coordinate. 
K 

The propagation speed c is assumed to be random; i.e., c is assumed 

to depend on a parameter a which is an element of a sample space A. The 

space A, together with a a-algebra of subsets and a probability measure, 

forms a probability space. The source term f is also random; however f 

is assumed to be statistically independent of c. Thus, f may be regarded as 

being dependent on a parameter b ranging over a different sample space B 

which, together with its own 0-algebra of subsets and probability measure, 

also forms a probability space. 

It is clear that the solution u of Equation 1, as well as functions of 

it, will depend on both a and b. (The dependence on the parameters a and 

b of the various quantities appearing in the analysis will not, in general, 

be explicitly indicated.) It will be necessary, therefore, in what follows to 

distinguish between ensemble averages over the space A, which will be denoted 

by < > and averages over B, denoted by < > An average over both A 

and B (i.e., an ensemble average over the product sample space A X B) will 

be denoted simply by < >. We note that generally < > = << > >  = << > >  

A' B' 

A B  B A' 

In most cases involving wave propagation in real media such as the atmos- 

here or ocean the fluctuations in the medium properties can be regarded as small. 

- 3- 



Thus it i s  rea l i s t ic ,  as w e l l  as mathematical ly  convenient ,  t o  w r i t e  c 

i n  the form 

c ( t , x )  = c o [ l + E p ( t , & ]  . ( 2 )  

Here & is  a small parameter which i s  a measure of t h e  magnitude of t h e  

f l u c t u a t i o n s  of t h e  medium, and 1-1 i s  a random f u n c t i o n  w i t h  ze ro  mean 

and u n i t  var iance ;  i .e. ,  < p  >A = 0, < p 2  > = 1. The q u a n t i t y  c o y  t h e  

average of cy  i s  assumed t o  be  a cons t an t .  

A 

Writ ing  c as i n  Equation 2 a l lows t h e  problem t o  b e  so lved  by a 

p e r t u r b a t i o n  technique. To begin,  w e  s u b s t i t u t e  t h e  expres s ion  f o r  c 

g iven  by Equation 2 i n t o  Equation 1 and expand i n  powers of E. This  

y i e l d s  

(Lo + E L 1  + &2L2 + - * * ) u  = f , 

where t h e  ope ra to r s  L o ,  L , ,  and L, are g iven  by 

-2  2 L,  = -2c0 p a t  , 

(3 )  

From Equation 3, approximate equat ions ,  v a l i d  when E is  s m a l l ,  can be 

obta ined  for  u and u, where u Z < u >  and u I u - u > ~ .  The procedure 

i s  e n t i r e l y  analogous t o  t h a t  descr ibed  by Keller17 

- -  - ... - 
A 

( see  a l s o  Ref. 18 ) .  It is  



only necessary to keep in mind that since f is independent of a it is 

unaffected by averaging Over A. When < L , >  = 0, which is usually the 

case in practice, these equations reduce to 

A 

M u - f  , 

- 
u = - E L ; ~ L ' Z  , 

where the operator M is defined by 

Terms of order 

E' 

& 3  have been dropped from Equation 7; terms of order 

have been dropped from Equation 8 .  

In the special case in which f is determinate (i.e., non-random) the 

quantities u (which is then a l s o  determinate) and u correspond respectively 

to the mean and fluctuating fields. In that context the type of approach 

leading to Equations 7 and 8, which involves obtaining separate equations for 

the mean and fluctuating fields, is referred to as the smoothing method by 

Frischle. 

5 
- 

We shall be concerned in the remainder of this paper only with random 

(By stationary we mean stationary processes which are stationary in time. 

in the wide sense, i.e., that correlation functions of the form given by 

Equation 19 are independent of t.) In order to ensure that u(t,L) is 

stationary in time we shall assume that both u(t,d and f(t,&) are 

stationary in time. That these assumptions are sufficient for our purposes 

will become clear as the analysis proceeds. In addition, we shall assume for 

-5- 



convenience that y(t,$ is statistically homogeneous and isotropic in 

space, and that <f>B = 0. 

We introduce next the Green's functions Go(t,z) and G(t,$, which 

are solutions of the equations 

and which satisfy the initial conditions Go = G = 0 for t < 0. (No 

boundary conditions need be imposed on Go or G since we are considering 

only free-space propagation.) Then L,' can be written in the form 

L~'w(t,~) =Jpo (t-t' ,/tt-st)w(tq ,x')dt'd2' 0- , 

where w(t,x) is any function for which the integral exists. (Here, and 

henceforth, an integral sign without limits denotes an integral from - - O O  

to +=.)  Similarly, the solution of Equation 7 can be expressed as 

By making a change of integration variable we can write Equations 12 and 1 3  

in the form 

,x-x')dt'dz' & *  , 



It should be pointed out that, as a consequence of the assumption 

that p(t,$) is stationary in t and 3 the operator M commutes with 

both time and space translations. This allows the Green's function G in 

Equation 13 to be written as a function of the differences 

z-z', instead of as a function of t,t', z ,  and 5' separately. Since 

the operator Lo has constant coefficients, it also commutes with both 

time and space translations, and hence the Green's function 

Equation 12 can also be written as a function of t-t' and 2-5'. That 

Go and G can be written as functions of t-t' in Equations 12 and 13 is 

necessary for the stationarity of u. Note also that both Go and G are 

determinate functions. 

t-t' and 

Go in 

- Operating with L, on u, as given by Equation 13, yields 

Llu(t,z) = 

(The subscripts on 

-Zciylp(t,x)G r W  tt (t-t' ,z-s')f (t' ,~')dt'd~' . (16) 

G denote derivatives.) By making a change of integration 

variable we can write Equation 16 in the form 

Operating on Equation 17 with 

the result into Equation 8 yields 

Lo' , as given by Equation 14, and substituting 

- 7- 



The c r o s s - c o r r e l a t i o n  €unc t ion  R ( T c z ~ , &  i s  de f ined  by 

R ( T , ~ , L )  = < u ( t , x > u ( t - T , x > >  u . 

- 
Upon w r i t i n g  u as t h e  sum u = u + 6 i n  Equation 19 w e  o b t a i n  

R ( T  ,x,  y> = <U( t , x)’u (t-T ,,y> > + <U( t ,XI<(  t-T , y> > + <G(t ,x>U( t-r , y) > 
’)r - .lu rl 4u ry zm, 

+ <G(t,x)G(t-T,y)> . 
7v 1y 

(19) 

The two c r o s s  terms on t h e  right-hand s i d e  of Equation 20; i . e . ,  t h e  terms 

invo lv ing  products of u and u, vanish.  This  fo l lows  from t h e  f a c t  t h a t  

u i s  independent of a and t h a t  <<>A = 0. Thus, f o r  t h e  f i r s t  c r o s s  t e r m ,  

w e  can w r i t e  

- - 

- 

( s i n c e  

f o r  t h e  remaining two terms on t h e  right-hand s i d e  of Equation 20 can be 

<ii(t-T,;)>A = 0 ) ,  and s i m i l a r l y  f o r  t h e  second c r o s s  t e r m .  Expressions 

ob ta ined  wi th  t h e  a i d  of Equations 15 and 18, a f t e r  which Equation 19 can be 

w r i t t e n  

where 



x d t ' dz ' d s ' dz '  , 

x d t ' d ~ l d s ' d ~ ' d t "  dx" 4, d s "  dx" . (23) 

The c o r r e l a t i o n  f u n c t i o n s  r and R, are de f ined  by 

I n  d e r i v i n g  Equations 22 and 2 3  use has  been made of t h e  f a c t  t h a t  p is 

independent of b and t h a t  f i s  independent of a. 

Note t h a t  u ( t , z ) ,  as ca l cu la t ed  h e r e ,  i s  indeed s t a t i o n a r y  i n  t i m e ,  as 

can be seen by r e f e r r i n g  t o  Equation 19 and Equations 21-23. 

The s p e c t r a l  d e n s i t y  func t ion  S ( b J , z , z )  i s  def ined by 

-9- 



where 

- 
To c a l c u l a t e  S we insert  i n t o  Equat ion 28 t h e  expres s ion  f o r  E given  by 

Equat ion 22 and c a r r y  ou t  t h e  i n t e g r a t i o n  over  T, t', and s ' .  The r e s u l t  i s  

where w e  have def ined  

and t h e  symbol ( > *  denotes  a complex conjugate .  S i m i l a r l y ,  an  expres s ion  

f o r  5 i s  obtained by s u b s t i t u t i n g  t h e  formula f o r  g iven  by Equat ion 23 

i n t o  Equat ion 29 and c a r r y i n g  o u t  t h e  i n t e g r a t i o n  over  T, t ' ,  s ' ,  t"  , and s"  . 
This  procedure y i e l d s  



where H, and 2 are de f ined  by 

H, ( w , ~ )  = Po (t ,x)eiwtdt 4- ( 3 4 )  

The n o t a t i o n  

w; i . e . ,  

( ) * (  ) i n  Equation 33 denotes  a convolut ion w i t h  r e s p e c t  t o  

(Whenever t h e  convolut ion symbol appears i n s i d e  b r a c k e t s ,  as i n  Equation 3 3 ,  

it i s  t o  be understood t h a t  on ly  t h e  terms i n s i d e  t h e  b r a c k e t s  are involved 

i n  t h e  convolut ion.)  

r e s u l t s  r e l a t i n g  t h e  F o u r i e r  transform of a product  of two f u n c t i o n s  t o  t h e  

convolut ion of t h e  transformed funct ions.  

I n  d e r i v i n g  Equation 33 w e  have made use  of some known 

The formulas f o r  R and S given above are a c c u r a t e  t o  o r d e r  E*;  i. e. ~ 

t h e  e r r o r  i n  them i s  of o r d e r  Th i s  is  a consequence of t h e  dropping of 

terms of o r d e r  c 3  i n  Equation 7 and E* i n  Equation 8 (no te  t h a t  u is  of 

o r d e r  E ) ,  and t h e  van i sh ing  of the c r o s s  terms i n  Equation 20. 

E ~ .  

- 

-11- 



For p r a c t i c a l  purposes i t  is  u s u a l l y  convenient  t o  assume t h a t  a l l  

processes  under cons ide ra t ion  are ergodic ,  as w e l l  as s t a t i o n a r y ,  i n  t i m e ,  

i n  which c a s e  the average denoted by < > can be regarded as a t i m e  

average. 

The ana lys i s  g iven  above can be gene ra l i zed ;  i .e. ,  i n s t e a d  of s t a r t i n g  

wi th  Equation 1 w e  can s t a t e  wi th  Equation 3 and assume t h a t  t h e  o p e r a t o r  

Lo 

are random w i t h  known s t a t i s t i c s .  The o p e r a t o r s  L o ,  L , ,  L,, e t c .  need 

n o t  be  otherwise s p e c i f i e d .  Formulas f o r  t h e  c o r r e l a t i o n  and s p e c t r a l  

dens i ty  func t ions ,  analogous t o  Equations 21-23, 27, 30, and 33, can then  

be  der ived  f o r  v a r i o u s  cases, depending on t h e  a d d i t i o n a l  assumptions made 

regard ing  the ope ra to r s  L o ,  L , ,  L,, e t c .  A gene ra l  a n a l y s i s  of t h i s  t ype  

is  determinate  wi th  a known i n v e r s e  and t h a t  t h e  o p e r a t o r s  L , ,  L,, etc.  

has  been ca r r i ed  o u t  and i s  a v a i l a b l e  i n  r e p o r t  formIg . 
I n  o r d e r  t o  proceed f u r t h e r  i t  is  necessary  t o  c a l c u l a t e  t h e  Green’s 

func t ions  G o  and G and t h e  t ransforms H, and H. The f u n c t i o n  

G o ,  which corresponds t o  a s p h e r i c a l  pulsed wave propagat ing i n  a uniform 

medium, i s  obtained by s o l v i n g  Equation 10, wi th  L o  given by Equation 4 ,  

s u b j e c t  t o  the  i n i t i a l  cond i t ion  G o  = 0 f o r  t < 0. Th i s  y i e l d s  t h e  

f a m i l i a r  waveform given by 

By i n s e r t i n g  t h e  express ion  f o r  given by Equation 36 i n t o  Equation 1 4 ,  

ca r ry ing  o u t  the i n t e g r a t i o n  over t ’ ,  and changing the  s p a t i a l  i n t e g r a t i o n  

v a r i a b l e ,  w e  can express  t h e  ope ra to r  L,’ i n  t h e  form 

G o  

-12- 



The f u n c t i o n  H,(w,z)  is e a s i l y  obtained by t ransforming Equation 36 

accord ing  t o  Equation 34. The r e s u l t  is 

where k = o/c,. 

The f u n c t i o n  G(t,xJ i s  determined by Equation 11, where t h e  o p e r a t o r  

M is given by Equation 9. With the a i d  of t h e s e  equa t ions ,  a long wi th  

Equations 4, 5, 6 ,  and 37 ,  we  can w r i t e  t h e  equa t ion  f o r  G i n  t h e  form 

( c i 2  a:-V2) G ( t  ,E)  + { 3ci2Gt t- (?Tc;)-~ 

where t h e  l e t te r  s u b s c r i p t s  denote d e r i v a t i v e s .  The i n i t i a l  c o n d i t i o n  f o r  

G is t h a t  G = 0 far t < 0. 

The procedure by which Equation 39 is  solved f o r  G ( t , s )  is  desc r ibed  

i n  Appendix A. Since w e  wish only t o  c a l c u l a t e  t h e  f u n c t i o n  S,  w e  need 

only t h e  t ransform H(w,x) of G ( t , z ) ,  as de f ined  by Equation 31. For t h e  

case i n  which t h e  medium is i s o t r o p i c  [ i . e . ,  when I ’ ( T , ~ )  = T ( T , ~ ) ]  t h i s  

q u a n t i t y  is  g iven  by 

-c* 

.cc 
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where 

C(k) = 1 + 2 ~ ~ $ ( k >  , (43) 

and 

I n  d e r i v i n g  Equations 40-44 higher-order  terms i n  E have been dropped. 

The source t e r m  f i s  assumed t o  r e p r e s e n t  a p o i n t  sou rce  i n  space  b u t  

one which is random i n  t i m e .  Accordingly w e  w r i t e  

where g ( t )  i s  a s t a t i o n a r y  random f u n c t i o n  w i t h  z e r o  mean. Equation 25 then  

y i e l d s  

-14- 



. 
Upon t ransforming Equation 46 according t o  Equation 32 w e  o b t a i n  

where Q, is  t h e  t ransform of Po; i .e . ,  

Q, !W) = Po (-r)eiwTdT . ( 4 9 )  

Expressions f o r  s and 5 can now be obtained by s u b s t i t u t i n g  t h e  

formula f o r  S o  

ou t  t h e  i n t e g r a t i o n  over 5' and )L' i n  Equation 30 and over z" and 2' 
i n  Equation 33. The r e s u l t  i s  

given by Equation 4 8  i n t o  Equations 30 and 33 and c a r r y i n g  

The s p e c t r a l  d e n s i t y  f u n c t i o n  S(o,?f,-& 

known f u n c t i o n s  wi th  t h e  a i d  of Equations 27, 50, 51, 3 8 ,  and 4 0 .  

can now b e  c a l c u l a t e d  i n  terms of 

- 
The expres s ion  f o r  S and 5 g iven  by Equations 50 and 5 1  can be 

cons ide rab ly  s i m p l i f i e d  i n  t h e  case of high-frequency waves; i .e . ,  when t h e  

c h a r a c t e r i s t i c  frequency of t h e  s o u r c e  i s  much g r e a t e r  t han  t h a t  of t h e  medium. 

I n  cons ide r ing  t h i s  case w e  s h a l l  r e s t r i c t  our  a t t e n t i o n  t o  t h e  power spectrum 

Q(w,x) , which i s  def ined by 
Y 
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From Equation 27 we have 

where 

Equation 

- 

Af 

50 and 5 1  yield 

er changing the integration variables in Equation 5 7  we can write 

The first step in t h e  high-frequency analysis is to obtain an 

asymptotic expansion, valid for large k ,  for the quantity K. This is 

easily accomplished by integrating by parts in Equation 41, after substituting 

for x from Zquation 42.  This yields the approximation 



K k + i a ,  ( 5 9 )  

where 

The quantity R 

medium, and is defined by 

is a characteristic length scale associated with the 

With the aid of Equations 38, 40, and 59 we can write Equations 56 and 5 8  

in the form 

where, from Equation 43, 

lC(k)I2 = 1 + 4~~Re@(k) . (64) 

(In deriving Equation 64 terms of order E 4  were dropped.) 

. The integral over 2' and e. x" in Equation 63 has been evaluated using 

the forward-scatter approximation. The details of that calculation are given 

-17- 



- 
in Appendix B. The resulting approximate expression for Q(w,g) can be 

written 

and 

. 

00 

;(w,v) = 2$Z(w.<)cos vS d< . (67) 

0 

An expression for Q(w,z) can now be obtained by substituting the 
.., - 

formulas for Q(w,x) and Q(w,.z) given by Equations 62 and 65 into 

Equation 53. 

mation 

(~Tx)-~ we obtain finally 

'W 

In so doing we simplify matters slightly by making the approxi- 

IC(k) l 2  = 1. After dividing through by the spherical-spreading term 

(4~x)~Q(w,2) = e-20xQo (w) + W(w)*(l-e-2ax)Qo (w) . (68) 

It should be pointed out here that, although the error in the general 

formulas for R and S given by Equations 21, 22, 23, 27, 30, and 33 is of 

order E ~ ,  the error in Equation 68 is of order E ~ .  This is because some 

terms of order were dropped in the derivation of this equation. 

We see from Equation 68 that, as ax + 0, 

(4~x)~Q(w,$ + Q, (a) . 

-18- 

~ ~~ ~~~~~ 



Thus, as E and/or  x ( t h e  source-f ie ld  p o i n t  d i s t a n c e )  goes t o  ze ro ,  

t h e  wave spectrum (with t h e  spherical-spreading t e r m  f a c t o r e d  o u t )  

approaches t h e  sou rce  spectrum, as w e  would expect .  

l i m i t ,  i .e . ,  as a x  + 00,  Equation 68 shows t h a t  

In  t h e  oppos i t e  

We see t h e r e f o r e  t h a t  t h e  wave spectrum (aga in  a p a r t  from t h e  s p h e r i c a l -  

sp read ing  term) tends t o  a l i m i t i n g  form as x + m. This  l i m i t i n g  form, 

which i s  given by t h e  convolut ion of W w i th  Q o ,  i s  r e f e r r e d  t o  h e r e  as 

t h e  fully-developed spectrum. 

It may b e  v e r i f i e d  by d i r e c t  i n t e g r a t i o n  of Equation 68 t h a t  

I n  t h e  d e r i v a t i o n  of Equation 69 w e  have used t h e  f a c t  t h a t  

SW(W)dw = 1 

Equation 69 shows t h a t  t h e  t o t a l  s i g n a l  power; i .e . ,  t h e  area under t h e  

spectral  curve,  normalized by t h e  sphe r i ca l - sp read ing  term, i s  conserved. 

We can s i m p l i f y  Equation 68 f u r t h e r  by assuming a narrow-band source ,  

i . e . ,  by assuming t h a t  t h e  c h a r a c t e r i s t i c  width of t h e  sou rce  spectrum 

Q,(w) is  much less than t h a t  of the f u n c t i o n  W(w). Then, i n s o f a r  as t h e  

convolut ion i n t e g r a l  is  concerned, Qo(w) 

Accordingly w e  r e p l a c e  Qo(w) i n  t h e  convo lu t ion  term by 

can b e  regarded as a d e l t a  func t ion .  
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( s i n c e  Q, must b e  an even f u n c t i o n ) ,  where oo > 0 (w, is  c a l l e d  t h e  

carrier frequency) and A, > 0. We can a l s o  w r i t e ,  i n  t h i s  case, 

-2ax Q 0 ( d  e - 2 a o X  Q,(w) , e 

where a. = E2k;L and k, = w,/c,. Then Equation 68 becomes 

-2CtoX -2CioX 
( 4 ~ x ) ~ Q ( 0 , 5 )  = e Q o ( ~ >  + (1- e >Q,W 

where 

By introducing a "broadening parameter" B ,  defined bv 

-2a0x 
f 3 = l - e  9 

w e  can w r i t e  Equation 70 i n  t h e  form 

(70) 

Thus w e  see t h a t  t h e  wave spectrum (with t h e  sphe r i ca l - sp read ing  term 

f a c t o r e d  o u t )  can be regarded i n  t h i s  c a s e  as a l i n e a r  ( i n  6) i n t e r p o l a t i o n  

between t h e  s o u r c e  spectrum Qo (w) and t h e  fully-developed spectrum Q,(w>. 
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We d e f i n e  t h e  bandwidth 6 of t h e  wave spectrum f o r  t h e  narrow - 
band case by w r i t i n g  

By s u b s t i t u t i n g  t h e  expres s ion  f o r  

74 w e  o b t a i n  

Q given by Equation 7 3  i n t o  Equation 

-- -- 
where wo is t h e  bandwidth of the sou rce  spectrum and w, is  t h e  bandwidth 

of t h e  fully-developed spectrum; i.e.,  

Equation 75 shows t h a t  3(x)  i nc reases  monotonically wi th  x from t h e  v a l u e  

w o  a t  x = 0, and t h a t  it approaches u, w i t h  i n c r e a s i n g  x. 
5 -- 

- 
I f  w e  assume t h a t  uo y 0, which i s  c o n s i s t e n t  w i th  t h e  assumption of a 

narrow-band source ,  then Equation 75 y i e l d s  

(78) 3(x) B 4 Gw . 

2 2  When a o x  << 1 w e  have, from Equation 72, 

Equation 78, 

f3 = 2 a 0 x  = 2 ~ :  koRx, and hence, from 

G(x) 2 Ek, ( 2 % ~ )  * - -  W, . (79) 
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Equation 79 is  v a l i d  when Ek0(2Px)' < <  1, i . e . ,  when G << Gm. 

equa t ion  shows t h a t ,  when t h e  propagat ion d i s t a n c e  i s  s m a l l ,  t h e  s p e c t r a l  

bandwidth i n c r e a s e s  as t h e  square r o o t  of t h e  p ropaga t ion  d i s t a n c e ,  and 

is  a l s o  l i n e a r  i n  t h e  carr ier  frequency i n  t h i s  range. 

This  

I n  o r d e r  t o  show t h e  broadening phenomenon g r a p h i c a l l y ,  numerical  

c a l c u l a t i o n s  of t h e  q u a n t i t y  (4nx)*Q(w,%) as a f u n c t i o n  of w have 

been made f o r  var ious va lues  of B using Equation 73. For t h i s  purpose 

t h e  sou rce  spectrum Q,(w) 

t i o n ,  cen te red  a t  W = W o  and r e f l e c t e d  about t h e  w = 0 a x i s  ( s i n c e  

Q o  must be an  even f u n c t i o n ) .  The f u n c t i o n  W(w) w a s  also chosen t o  be 

a r e f l e c t e d  Gaussian, with a maximum i n  t h e  f i r s t  i n s t a n c e  a t  w = 0 and 

i n  t h e  second a t  a frequency R, f o r  which 0 < R, << w,. 

w a s  chosen t o  be a narrow-band Gaussian func- 

The r e s u l t s  of t h e s e  c a l c u l a t i o n s  are p l o t t e d  ( i n  dimensionless  

coord ina te s  ) i n  F igu res  1 and 2. A l l  of t h e  curves i n  each f i g u r e  are 

p l o t t e d  on t h e  same scale. Note t h a t  i n  each f i g u r e  t h e  curve l a b e l e d  

B = 0 corresponds t o  t h e  source spectrum, t h e  curve l a b e l e d  B = 1 

corresponds t o  t h e  fully-developed spectrum, and those  l a b e l e d  wi th  va lues  

of B between zero and one correspond t o  i n t e r m e d i a t e  s t a g e s  i n  the  

broadening process.  Both s e t s  of curves  show c l e a r l y  t h e  broadening of t h e  

wave spectrum with i n c r e a s i n g  (3, which is  e q u i v a l e n t  t o  i n c r e a s i n g  e i t h e r  

t h e  propagation d i s t a n c e  o r  t h e  s t r e n g t h  of t h e  randomness of t h e  medium. 

The two sets d i f f e r ,  however, i n  one respect. The r e s u l t s  shown i n  F igu re  

2 ,  f o r  which t h e  f u n c t i o n  W(w) has a m a x i m u m  a t  a non-zero va lue  of w, 

are  marked by the appearance of s i d e  lobes  on t h e  broadened spectrum. I n  

Figure 1, by c o n t r a s t ,  f o r  which t h e  maximum of W(w) occur s  a t  w = 0, 

no such s i d e  lobes appear.  
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The results obtained here appear generally to be in qualitative agree- 

ment with observations, as can be seen by, for example, comparing Figure 1 

with Figure 11 of Reference 1 or Figure 3 of Reference 2. 

that the observations reported in References 1 and 2 indicate conservation 

of total signal power, which is also consistent with the present results 

(cf. Equation 69). 

Note moreover 
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LIST OF FIGURES 

Fig. 1. Dimensionless wave spectrum (with the spherical-spreading 

term factored out) vs. dimensionless frequency for various values of 

the broadening parameter 8. The calculations are based on Equation 

73. The mark on the horizontal scale corresponds to the carrier 

frequency w o .  The function W(W> has a maximum at w = 0. 

Fig. 2. Same as Fig. 1, except that the function W(W) has a maximum 

at a non-zero value of W. 
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APPENDIX A. CALCULATION OF G( t ,x )  AND B(w,x )  
U fl' 

The funct ion G(t ,E)  i s  determined by Equation 39, t o g e t h e r  w i t h  t h e  

i n i t i a l  condi t ion G = 0 f o r  t < 0. An equa t ion  f o r  t h e  t r ans fo rm 

H(wy~) 

both s i d e s  of Equation 39. The r e s u l t  is  

of G(t,z), as de f ined  by Equation 31, i s  ob ta ined  by t ransforming 

[ V 2 +  ( 1 + 3 ~ ~ ) k ~  ]H(w,x) + (E2k2/.rr) f < - l e i k t  
rcc 

where t h e  func t ion  X ( k y i )  is  def ined by 

I n  o r d e r  t o  s o l v e  Equation A 1  w e  i n t roduce  t h e  s p a t i a l  F o u r i e r  t r a n s -  
h 

form H(w,m) of H(w,x), de f ined  by 
rlc- .* 

3 

i= 1 
where m O X  = - mixi. Transforming both s i d e s  of Equation A 1  according t o  

t h e  p r e s c r i p t i o n  given by Equation A3 and s o l v i n g  f o r  

w - -  

fi y i e l d s  

where w e  have def ined 

i 



. 

D(k,m) &L = m2 - (1+3c2)k2 - (E2k2/n)fi-’eikS 

With the aid of Equation A4 we can now express 

form, i.e., we write 

H ( w , x )  as an inverse trans- 
e 

H(w,x) = (8a))-Y[D(k7m)]-’e im *X cdm . 
.+- .+c c 

In order to proceed further we assume that the medium is statistically 

isotropic, s o  that we can write r ( T , c )  = r(.r,<). Then, in view of Equation 
A2, we can also write The angular integration in Equation 

A5 can now be carried out, yielding 

IL. 

X(k,i) = X(k,<). 

D(k,m) & = D(k,m) = m2 - ( 1 + 3 c 2 ) k 2  - 4c2k2rn-’ /,ikcX(k7<) sin mcd< . (A7) 
0 

Upon substituting the expression for D given by Equation A7 into Equation 

A6 and carrying out the angular integration we find that 

H(w,x) = (2.rr2x)-’ [D(k,m)]-’m sin mx dm . 
.* J 

0 

The integral in Equation A8 can be evaluated by means of contour integration, 

after which the expression for H can be written 

H(w,x) 4% = (~ITx)-’ [Dm(k,~)]-’KeiKX 

Here Dm denotes the derivative of D(k,m) with respect to m 

(regarded now as a complex variable), and K is the root of the dispersion 
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equation D(k,K) = 0 which has the property that K -f k as E -+ 0.  

This root is given, to lowest order in E, by Equation 41. Upon sub- 

stituting the expression for K 

after calculating 

H given by Equation 40. 

given by Equation 41 into Equation A 9 ,  

Dm using Equation A 7 ,  we obtain the expression for 

The function G ( t , x )  can now be obtained by applying the inverse 
A& 

Fourier transform to Equation 40. We shall not carry out that calculation 

here, however, since we need only the function That calculation 

was carried out in Reference 20 for the case of a time-independent medium. 

H(W,Z). 
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APPENDIX B. CALCULATION OF 6 USING THE FORWARD-SCATTER APPROXIMATION 

By making e x p l i c i t  t h e  w '  i n t e g r a t i o n  i n  Equation 63 and changing t h e  
- 

o r d e r  of i n t e g r a t i o n  w e  can w r i t e  t he  expres s ion  f o r  Q i n  t h e  form 

where t h e  i n t e g r a l  I is defined by 

ik '  (x'-x'' )e  - c(' (x' + X" )dEldxl,  
c1- 

x e  

Here k'  = w ' / c o  and a' = E2kV2R. Equation B2 can be wr i t t en  i n  t h e  

a l t e r n a t e  form 

ik '  (1g-C I + x ' )  - i k '  (1x-x"I + x " )  e I I C  .5 

I x-x' 1x1 I X-XI'I x". 
I(w,x;w') = 

i (k-k ' )  (x-x' 4 4 R  le-i(k-k')  Ix-x"I ,h .k 

which is  more convenient f o r  t h e  a p p l i c a t i o n  of t h e  fo rward - sca t t e r  

approximation. 

We begin t h e  a n a l y s i s  by s u b s t i t u t i n g  f o r  Z i n  terms of I' i n  Equation 

€33 wi th  t h e  a i d  of Equation 35. By changing t h e  o r d e r  of i n t e g r a t i o n  i n  t h e  

r e s u l t i n g  expres s ion  f o r  I we ge t  
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i (k-k' ) I x-x' I e-i (k-k' I x-x"I 
x r ( T , g  - x ' ) e  * w  .(c w 

6. 

Next w e  u se  Equation 24 t o  s u b s t i t u t e  f o r  r i n  terms of 1 ~ -  i n  Equation 

B4. Upon reve r s ing  t h e  o r d e r  of t h e  averaging and i n t e g r a t i o n  (over x '  

and 2" ) processes ,  we n o t e  t h a t  t h e  double s p a t i a l  i n t e g r a l  can be s p l i t  

i n t o  a product of two i n t e g r a l s .  Equation B4 can then  be w r i t t e n  

-F- 

where 

and 

- i k '  (Ix-x"I + x" ) 
(I& - i (k -k ' )  Ix-x" I 

J - =le p(t--T,x" .& ) e  ?c cr- 
Ix-x"I x" 

We can now apply t h e  fo rward - sca t t e r  approximation, as d i scussed  i n  

Reference 21, t o  t h e  i n t e g r a l s  J+ and J . This  y i e l d s  - 
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= (2?~i/k'x)e i(k-k') (x-x') 
J+ 

0 

dx' + O(k'-2) , --C('x' X e  

-ik'x -i (k-k' ) (x-X" ) 1.1 (t--c, 0,O , x" )e i J - = -(21~i/k'x)e 
0 

' x '' 
X e  dx" + O(k'-2) . 

In the derivation of Equations B9 and B10 we have set z= (O,O,x). 
entails no loss of generality since the medium has been assumed statistically 

isotropic. 

This 

Conditions for the validity of the forward-scatter approximation are 

given in Reference 21. In the present context these conditions take the 

f o m  

where k is a characteristic wavenumber associated with the wave field. 
1 

By substituting the expressions for J+ and J- given by Equations B9 

and B10 into Equation B6, dropping terms of order 

obtain 

k'-3  , and averaging, we 

X 
< J >A = (4n2/kt2x2) / ~ ~ ( T , x "  -x')e i(k-k') (x" -x') 

0 0  

The double integral in Equation B12 can be partially evaluated with the aid 

of the coordinate transformation 6 = x" - XI, q = x" + x'. The result is 
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In deriving Equation B13 we have made use of the fact that 

in 5. 

I'(-c,<) is given 

We can now get a series expansion for <J>A in powers of a' 

(which is equivalent to an expansion in powers of by expanding the 

terms exp(a'S) and exp(-a'<) in Equation B13 and integrating term by 

term. This yields 

tz2) 

When x >> R the integration in Equation B14 can be extended to +a, 

without introducing significant error into the integral. Upon dropping all 

but the first term of the resulting expansion we obtain 

An approximate expression for the integral I can now be obtained by 

given by Equation B15 into Equation B5 substituting the result for 

and carrying out the integration over T. This yields 

< J > *  

) 2 (w-w' , k-k' ) , -2a'x I = (2n2/ct'k'2~2) (1-e 
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where ẑ  is defined by Equation 67. Upon combining Equations B1 and B16 

we obtain the expression for 6 .  given by Equation 65. 

c 
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